
  

 

Abstract—A data streams is a sequence of dynamic, 

continuous, unbounded and real time data items with a very 

high data rate that can only be read once. In data mining, 

clustering is one of useful techniques for discovering interesting 

data in the underlying data objects. The problem of clustering 

can be defined formally as follows: given n data points in the 

d-dimensional metric space, partition the data points into k 

clusters such that the data points within a cluster are more 

similar to each other than data points in different clusters. In 

the data streams environment, the difficulties of data streams 

clustering contain storage overhead, low clustering quality and 

a low updating efficiency. Therefore, in this paper, we present a 

new clustering algorithm with high quality, GDense, for data 

streams. The GDense algorithm has high quality due to two 

kinds of partition: cells and quadcells, and two kinds of 

threshold: δ and (1/4)δ. From our simulation results, no matter 

what condition (including the number of data points, the 

number of cells, the size of the sliding window, and the 

threshold of dense cell) is, the clustering purity of our GDense 

algorithm is always higher than that of the CDS-Tree 

algorithm. 

 

Index Terms—Clustering, data mining, data stream, 

density-based, grid-based.  

 

I. INTRODUCTION 

Data mining involves the use of sophisticated data analysis 

tools to discover previously unknown, valid patters and 

relationships in large data sets. Data mining can be used in 

many areas in our life. Data mining algorithms can be 

classified into the following categories: classification, 

clustering, association rules, sequential patterns, time series 

patterns, link analysis and text mining. A data stream is an 

ordered sequence of items that arrives in timely order [1]. 

A data stream is a sequence of dynamic, continuous, 

unbounded and real time data items with a very high data rate 

that can only read once. High speed refers to the phenomenon 

that the data rate is high relative to the computational power. 

Mining data streams is concerned with extracting knowledge 

structures represented in models and patterns in non-stopping 

streams of information. It raises new problems for the data 

mining community in terms of how to mine continuous 

high-speed data items that you can only have one look at [2], 

[3] Mining data streams is a real time process of extracting 

interesting patterns from high-speed data streams. Therefore, 

 

the research in data stream mining has gained a high 

attraction due to the importance of its applications and the 

increasing generation of streaming information. Applications 

of data stream analysis can vary from critical scientific and 

astronomical applications to important business and financial 

ones [4], [5]. 

Clustering is an important task in data mining. The 

problem of clustering can be defined formally as follows: 

given n data points in a d-dimensional metric space, partition 

the data points into k clusters such that the data points within 

a cluster are more similar to each other than data points in 

different clusters [6]. A common form of data analysis in 

many applications involves clustering. It is useful for 

discovering groups and identifying interesting distributions 

in the underlying data. Clustering algorithms are attractive 

for the task identification in spatial databases. 

The density-based approach applies a local cluster 

criterion. Clusters are regarded as dense regions in the data 

space, and separated by regions of low object density (noise 

or outlier). These regions may have an arbitrary shape and the 

points inside a region may be arbitrarily distributed [7]. The 

advantages of the density-based approach are that it can 

discover clusters with arbitrary shapes and it does not need to 

preset the number of clusters. 

Although this method has a lot of advantages, it still has 

some disadvantages. If users do not give the appropriate 

values of these parameters, the result would be very bad. In 

the data streams environment, Cao et al. proposed 

DenStream [8]. The method can discover clusters of arbitrary 

shape in data stream, but it is insensitive to noises. The 

grid-based approach is the feature space quantized into cells 

using a grid structure. The cells can be merged together to 

form clusters [9]. 

The ubiquitous presence of data streams in a number of 

practical domains has generated a lot of research in this area 

[10]-[17]. Discovery of the patterns hidden in streaming data 

imposes a great challenge for cluster analysis. The goal of 

clustering is to group the streaming data into meaningful 

classes [9]. Furthermore, because of the dynamic nature of 

evolving data streams, the role of outliers and clusters are 

often exchanged, and consequently new clusters often 

emerge, while old clusters fade out. The difficulties of data 

streams clustering contain storage overhead, low clustering 

quality and a low updating efficiency. Therefore, the 

clustering algorithm should adopt an incremental manner. It 

becomes more complex when data streams insert and delete. 

The CDS-Tree algorithm combines the advantages of the 

grid-based approach and the density-based approach. It can 

handle large databases. However, the clustering quality is 

restricted to the grid partition and the threshold of a dense cell. 

In the CDS-Tree algorithm, when the threshold is set too 

small, it cannot discard noises and it needs many merging 
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times at the merging stage. On the other hand, when the 

threshold is set too large, it has some missing cases which 

will affect clustering quality. Therefore, to improve the 

disadvantages of the CDS-Tree algorithm, in this paper, we 

present a new clustering algorithm, GDense, for data streams. 

It combines the grid-based approach with the density-based 

approach. We use the clustering algorithm of the grid-based 

approach, because it is efficient for large special databases. 

So, it adapts to the data streams environment. We also apply 

the idea of the density-based approach, because it can 

discover clusters with arbitrary shapes, and it does not need to 

preset the number of cluster. 

The rest of the paper is organized as follows. Section II 

gives a survey of several well-known clustering algorithms 

for data streams. Section III, presents the proposed new 

clustering algorithm based on the grid and dense approaches 

for data streams. In Section IV, we give a comparison of the 

performance of the CDS-Tree algorithm and our new 

clustering algorithm. Finally, we give a conclusion. 

 

II. RELATED WORK 

The CDS-Tree (Cell Dimension Tree for Streams) 

algorithm is a cell-based approach. The CDS-Tree [18] stores 

only non-empty cells and keeps the position relationship 

among cells. The CDS-Tree of dataset X under a partition is a 

balanced tree <Root-Node, MidNodes, Leaf-Nodes, Edges>. 

Suppose database X has the dimensions A1, A2, . . . ,Ak, we 

have 

1) Root-Node is the root-node of the tree and corresponding 

to the first dimension A1. 

2) Mid-Nodes is the set of intermediate nodes that are 

between the root nodes and the leaf nodes. The 

Mid-Nodes at the i-th level corresponds to the dimension 

Ai, uniquely, and contain all the distinct interval numbers 

of the dimension Ai corresponding to the non-empty cells 

based on intervals of the anterior the i-th dimension. 

3) Leaf-Nodes is the set of the leaf-nodes, which is at the 

level (k+1). A leaf-node is represented as <Coor, 

Total-Num, Num-Point-List>. Coor is the coordinate of a 

cell represented as (cNO1, cNO2, . . . ,cNOk). Total-Num is 

the total number of points falling in this cell. 

Num-Point-List is a list of the number of points, whose 

length is equal to the number of buckets in the sliding 

window, representing the number of points in the 

corresponding bucket that fall in the cell. Fig. 1 illustrates 

a sliding window model of the data stream. There are u 

buckets in window, whcih are numbered with B1, B2, . . . ,  

Bn. We have the following properties: 

4) The Edges is a set of the pointers in non-leaf nodes 

(Root−Node and Mid−Nodes). 
 

 
Fig. 1. A sliding window model. 

 

The non-leaf nodes have the form <cNO, pointers>, where 

cNO is a keyword. The keyword of the i-th level is a distinct 

interval number of the i-th dimension corresponding to a cell, 

and pointer is a set of pointers; each of which points to the 

next level node. The pointer of the k-th level internal-nodes 

points a leaf node. 

5) A path from the root node to a leaf node corresponds to a 

cell. 

Fig. 2 a) shows the cell structure of a 2-dimension (A1 and 

A2) dataset under a partition, so the interval number of each 

dimension is from 1 to 6. Suppose that the gray cells 

represent the non-empty cells, and they show the distribution 

of data stream in a window. Fig. 2 b) is the CDS-Tree 

structure corresponding to the cell structure, which only 

stores non-empty cells. 
 

  a)                                                           b) 

Fig. 2. An example of a CDS-Tree: a) the cell structure of a 2-dimension; b) 

the CDS-Tree structure corresponding to the cell structure. 

 

The CDS-Tree building algorithm receives the current data 

object and computes coordinates (i.e. the interval number of 

each dimension) of them. If the cell corresponding to this 

object exists, we add the number of points in this cell. 

Otherwise, we create a new cell. The algorithm does not deal 

with the discard of buckets. The Clustering algorithm based 

on the CDS-Tree executes a width-first search on the 

CDS-Tree. Fig. 3 gives the clustering procedure on data 

streams, which marks adjacent dense cells with the same 

cluster number. 
 

 
Fig. 3. The Clustering algorithm based on the CDS-Tree. 

 

III. THE GDENSE ALGORITHM 

In this section, we present our GDense algorithm for 

clustering data streams. The GDense algorithm is a clustering 

algorithm based on the grid and dense approaches. Moreover, 

it is based on the sliding window model. In the data stream 

environment, as the data increases, the requirement of the 

storage space will also increase. Since the GDense algorithm 

only stores information about the non-empty grids, it needs 

only small memory space. On the other hand, the clustering 

result based on the grid approach is limited by the grid size. 

Therefore, we propose a refinement algorithm to improve 

those quality of the grid-based algorithms. We focuses on the 

data stream environment. Several assumptions should be 

restricted in order to make our work feasible. These 

assumptions are as follows: 
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1) The input data must be number data. 

2) The input data is two-dimension data. 

3) Cluster similarity is based on the distance. 

The GDense algorithm maps each incoming data point into 

the one non-overlapping rectangular cells (grids), and a 

cluster is composed of a set of dense cells and dense 

quadcells. A dense cell is defined as a cell whose number of 

data points is larger than or equal to δ. Table I shows the 

parameters used in our GDense algorithm. A cell as shown in 

Fig. 4 a) is divided into four quadcells according to different 

directions: UL (upper-left), UR (upper-right), DL (down-left) 

and DR (down-right) as shown in Fig. 4 b). 
 

TABLE I: DESCRIPTION OF PARAMETERS 

Str The stream data 

δ The threshold of a cell 

count The count of data points in the cell 

CNum The cluster number of the cell 

cell x The x coordinate of a cell 

cell y The y coordinate of a cell 

UL The count of data points in an upper-left quadcell 

UR The count of data points in an upper-right quadcell 

DL The count of data points in a down-left quadcell 

DR The count of data points in a down-right quadcell 

UL_CNum The cluster number of a ULquadcell 

UR_CNum The cluster number of a URquadcell 

DL_CNum The cluster number of a DLquadcell 

DR_CNum The cluster number of a DRquadcell 

Old_Object The oldest object 

ClusterResult The cluster result 

 

 
a)                                                 b) 

Fig. 4. Cells and quadcells: a) a cell; b) the corresponding quadcells. 

 

In addition to four quadcells, we also consider the 

threshold of a quadcell. Take cell (4, 3) which is a dense cell 

in Fig. 5 as an example. If we only take the threshold of a cell 

into account, some data points may become outliers. The 

cluster only contains cell (4, 3). If we consider quadcells but 

not their thresholds, all data points will be in a cluster. But the 

distance is far between cell (0, 3) and cell (4, 3). On the 

contrary, if we take the threshold of the quadcell into account, 

the cluster will be the shadow region, which is more precise 

than previous results. To improve the clustering quality, we 

take the threshold of the quadcell into consideration. 

Therefore, a dense quadcell is defined that the number of data 

points is larger than or equal to (1/4)δ, whereδis the threshold 

of a cell. 

Fig. 6 shows our algorithm. The GDense algorithm has 

two procedures: Procedure ClusterDS and Procedure 

User_Request. Basically, the main algorithm is in Procedure 

ClusterDS. When users request for the clustering result, the 

GDense algorithm will call Procedure User_Request and 

response in real time. Procedure ClusterDS contains two 

steps: data insertion and data deletion. Fig. 7 shows 

Procedure ClusterDS. Because of the sliding window model, 

we must record the oldest object. If the sliding window is not 

full, we will insert data and cluster data by calling Procedure 

InsertionD. Otherwise, when the sliding window is full, we 

will delete the oldest data and cluster data by calling 

ProcedureDeletionD. 
 

 
Fig. 5. An example of the threshold of the quadcell of cluster data streams. 

 

 
Fig. 6. Procedure GDense. 

 

 
Fig. 7. Procedure ClsuterDS. 

 

Step 1: Data Insertion 

In this step, first, when the stream data is inserted, we will 

map the original data to the space database and update the 

count of the cell structure. Procedure InsertionD is shown in 

Fig. 8.The original cell structure is shown in Fig. 9 a), and 

data point X is mapped to cell (1, 2) as shown in Fig. 9 b). 

After mapping the data point to cell structure, it will update 

the value of count to 1, cell_xto 1, cell_y to 2 and UL to 1. If 

the count of data points in the quadcell is more than (1/4)δ, 

these data points may be merged. Finally, it will return CellP 

= (1, 2) and QuadcellP = UL.ProcedureInsertionD contains 7 

cases as shown in Fig. 10 and Fig. 11. We take 3 factors about 

the cell and the quadcell into consideration: whether there is 

CNum, whether it is dense, and whether it has outer 

neighbors. 

Step 2: Data Deletion 

When the sliding window is full, Step 2 will be applied. 

First, we apply Procedure Del_Update(Old_Object,δ, CellP) 

as shown in Fig. 12 to delete dataOld_Object and update the 

cell structure of the corresponding cell. If the count of the 

corresponding cell is less than the density threshold after 

deleting data Old_Object, CNum of the cell and its quadcells 

will be updated to 0. CNum = 0 means that those data points 

in the cell are outliers. Procedure DeletionD is shown in Fig. 

12. In this step, it contains 10 cases as shown in Fig. 13. Let 

NumX be the CNum of CellP, where CellP is the cell of 

deleted point. We take account of the following 5 factors 
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about the cell as shown in Fig. 14: whether NumX is updated, 

whether the CNum of the right diagonal quadcell is NumX, 

whether the CNum of left diagonal quadcell is NumX, 

whether theCNum of the up and down quadcells are NumX 

and whether theCNum of the left and down quadcells are 

NumX. If NumX is updated, it may affect other clusters. 
 

 
Fig. 8. Procedure InsertionD. 

 

 
(a)                                     (b) 

Fig. 9. An example: data structure of Procedure Ins_Map_Update: a) the 

original cell structure of cell (1, 2); b) data point X (1.2, 2.6) is mapped to 

cell (1, 2). 

 

 
Fig. 10. The overview of 7 cases. 

 

Now, let us use a simple example to show our algorithm 

with high quality. In the example of Table II, data point (1.1, 

1.8) in transaction Tid1 will be mapped to cell (1, 1) by calling 

Procedure Ins_Map_Udpate. Let δbe 8 and (1/4)δ be 2. 

Because both of cell (1, 1) and the quadcell in cell (1, 1) have 

no CNum and are not dense, it is Case 7 of 

ProcedureInsertionD. In the same way, the insertions from 

transaction Tid1 to transaction Tid6 are also Case 7 of 

Procedure InsertionD. After inserting the 7th data point, the 

quadcell in cell (0, 1) becomes dense, but it has no outer 

neighboring cell. So, it cannot form a cluster. Therefore, it is 

Case 6 of ProcedureInsertionD. 
 

 
Fig. 11. The 7 cases of data insertion. 

 

 
Fig. 12. Procedure DeletionD. 

 

 
Fig. 13. The overview of 10 cases. 
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After inserting the 10th data point into cell (1, 1), the count 

of the cell is greater than δ. So, cell (1, 1) becomes dense. 

Because cell (1, 1) has no CNum, the cell can form a cluster. 

Moreover, the cell has outer neighboring quadcell and the 

count of the quadcell is greater than (1/4) δ, so it connects the 

outer neighboring quadcell. Therefore, this case is Case 2 of 

Procedure InsertionD. 

When the 11th and 12th data points are inserted, the two 

data points will become outliers. Although the count of the 

quadcells in cell (1, 2) is greater than (1/4)δ, it has no outer 

neighboring cell. Therefore, due to a cluster has to be dense, 

so the two data points can not form a cluster. In the same way, 

from order 13 to order 14 are also Case 7 of Procedure 

InsertionD. After inserting the 15th data point, the quadcell in 

cell (0, 1) will be dense. It is Case 4 of Procedure InsertionD. 

The data points in the quadcell will be connected into cluster 

C1. 

In the same way as that of the above-mentioned cases, after 

inserting 20 data points, the result is shown in Fig. 15. There 

are 5 outliers in the 20 data points. 
 

 
Fig. 14. The 10 cases of data deletion. 

 

 
Fig. 15. The result of the insertion from Tid1 to Tid20, where δ= 8, (1/4)δ= 2. 

 

TABLE II: GIVEN STREAM DATA POINTS, WHERE WINDOW SIZE = 30, Δ = 8. 

Tid data point Tid data point 

1 (1.1, 1.8) 11 (1.7, 2.9) 

2 (1.2, 1.9) 12 (1.8, 2.9) 

3 (0.6, 1.4) 13 (1.7, 0.8) 

4 (1.6, 1.3) 14 (0.9, 1.9) 

5 (1.9, 1.6) 15 (0.7, 1.6) 

6 (1.4, 1.8) 16 (1.8, 0.7) 

7 (0.8, 1.1) 17 (2.7, 2.9) 

8 (1.5, 1.4) 18 (0.2, 0.4) 

9 (1.9, 1.1) 19 (1.6, 1.6) 

10 (1.1, 1.4) 20 (2.8, 2.6) 

IV. PERFORMANCE 

In this section, we study the performance of the GDense 

algorithm by simulation, and make a comparison with the 

CDS-Tree algorithm [18]. Our experiments were performed 

on an Intel Pentium IV 2.66G Hz, 1GB RAM, running 

Windows XP Professional, and coded in Java. 

The generation of data sets is controlled by a set of 

parameters that are summarized in Table III. We performed 

evaluation with these data sets which contain data points in 

the two-dimensional space. Clustering validation [1] refers to 

procedures that evaluate the results of cluster analysis in a 

quantitative and object fashion. The clustering validation 

usually uses the execution time and cluster quality to evaluate 

the cluster. One of the ways of measuring the quality of a 

clustering solution is the cluster purity. Let there be k clusters 

of the dataset D and the size of cluster Cj be |Cj |. Let |Cj |class=i 

denote number of items of classi assigned to cluster j. Given 

the true set of clusters (referred to as class henceforth to avoid 

confusion), CT = {c1, c2,...,cL}. The cluster obtained from an 

algorithm is Cs = {C1, C2,...,Ck}. The purity of this cluster is 

given by [19] 

 

     𝑝𝑢𝑟𝑖𝑡𝑦 𝐶𝑗 =
1

|𝐶𝑗 |
max𝑖(|𝐶𝑗  𝑐𝑙𝑎𝑠𝑠 = 𝑖             (1) 

 

The overall purity of a clustering solution could be 

expressed as a weighted sum of individual cluster purities 

 

𝑝𝑢𝑟𝑖𝑡𝑦 =  
 𝐶𝑗  

𝐷

𝑘
𝑗=1 𝑝𝑢𝑟𝑖𝑡𝑦 𝐶𝑗                       (2) 

 

In general, the larger the value of the purity is, the better 

the solution is. Purity lies in the range [0, 1], with a perfect 

clustering corresponding to the purity value of 1 [20]. 
 

TABLE III: PARAMETERS OF THE DATA GENERATOR 

Parameter Meaning 

N The total number of data points 

m The number of cells 

w The size of the sliding window 

δ The threshold of a dense cell 

 

We make a comparison with the CDS-Tree algorithm [18]. 

In our simulation, four parameters and their default settings 

are listed in Table IV. The synthetic datasets used in our 

simulation were generated by randomly creating 5 clusters on 

1000 × 1000 space. We set 5 clusters which contain 2 circles 

and 3 ellipses. Given a circle, suppose the center of the circle 

locates at (a, b), so the equation of the circle is 

(x - a)2 + (y - b)2 = r2                                             (3) 

Fig. 16 shows an ellipse. Moreover given an ellipse, 

suppose the center of ellipse locates at (c, d), so the equation 

of the ellipse is 
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Fig. 16. The ellipse.



  

TABLE IV: PARAMETERS OF THE GENERATOR 

Parameter Value 

N 20000...100000 

m 100 * 100...200 * 200 

w 200...1000 

δ 8...40 

 

Table V and Table VI show the parameters of the 5 graphs. 

The total number of points is changed from 20000 to 100000 

in the 5 graphs, and the threshold of a dense cell is equal to 

0.4 percentage of the total number of data points. We map the 

data points to 100 × 100 cell space. Fig. 17 shows a 

comparison of the purity between our GDense algorithm and 

the CDS-Tree algorithm in 10 times averages. The purity of 

the GDense algorithm is above 95%, based on the 

distribution of 5 clusters. The data points in the 5 clusters are 

created randomly. Even when the density of a cell A1δis less 

than, but the cell is close to a cluster C1, our algorithm will 

add such a cell A1 to the cluster C1. Because the points the 

quadcell in the cell A1 is more than the threshold of a dense 

quadcell. While in the CDS-Tree algorithm, the points in 

such a cell A1 will be considered as outliers. If such points are 

considered as outliers, the purity will be affected. 
 

TABLE V: PARAMMETERS OF 2 CIRCLES 

Circle Center Radius (r) 

Circle 1 (150, 200) 130 

Circle 2 (600, 300) 100 

Circle 3 (400, 550) 60 

 

TABLE VI: THE PARAMETERS OF 2 CIRCLES 

Ellipse Center Horizon (h) Vertical (v) 

Ellipse 1 (100, 650) 200 150 

Ellipse 2 (800, 800) 120 100 

 

 
Fig. 17. A comparison of the purity under 100 × 100 grids partition. 

 

 
Fig. 18. A comparison of the purity with outliers. 

 

Next, we simulate the data sets with outliers. Fig. 18 shows 

the comparison of the purity between the GDense algorithm 

and the CDS-Tree algorithm with outliers. The finer the 

partition is, the higher the purity is. Our GDense algorithm is 

under 100 × 100 grid partitions, and the CDS-Tree algorithm 

is under 200 × 200 grid partitions. Therefore, the threshold of 

the GDense algorithm is four times than the CDS-Tree. The 

number of points is 100000, and the window sizes is 1000. 

The percentage of outliers that we set is from 5% to 25%. In 

the CDS-Tree algorithm, as the number of outliers increases, 

the purity will decrease. This is because the capability of 

detecting outliers with finer partition is poor in the CDS-Tree 

algorithm. However, no matter whether the number of the 

outlier becomes larger or not, the GDense algorithm still can 

discard outliers. Therefore, the purity of the GDense 

algorithm is more stable than that of the CDS-Tree algorithm. 

As mentioned above, we observe that there are two main 

conditions which affect the purity. One condition occurs, 

when the density of a cell is less than δ and the points in the 

cellP is close to a cluster. So, the cellP should be in the 

cluster. But when the threshold of a dense cell is set too large, 

the cellP will become another cluster. The other condition 

occurs, when the threshold of a dense cell is set too small. 

The CDS-Tree algorithm cannot detect outliers accurately. 

According to these simulation results, our GDense algorithm 

can improve the above two cases, resulting in the high purity 

of the results of clusters. 

 

V. CONCLUSION 

In this paper, we have proposed a new algorithm called 

GDense to cluster large databases in data streams. The basic 

idea is to use the hybrid partitions, i.e., cells and quadcells, to 

raise the clustering quality. Our result not only confirms that 

the quality of cluster produced by GDense is much better than 

CDS-Tree algorithm based on the grid-based approaches, but 

also discards noises during the mining process. 
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