

Abstract—A data streams is a sequence of dynamic,

continuous, unbounded and real time data items with a very

high data rate that can only be read once. In data mining,

clustering is one of useful techniques for discovering interesting

data in the underlying data objects. The problem of clustering

can be defined formally as follows: given n data points in the

d-dimensional metric space, partition the data points into k

clusters such that the data points within a cluster are more

similar to each other than data points in different clusters. In

the data streams environment, the difficulties of data streams

clustering contain storage overhead, low clustering quality and

a low updating efficiency. Therefore, in this paper, we present a

new clustering algorithm with high quality, GDense, for data

streams. The GDense algorithm has high quality due to two

kinds of partition: cells and quadcells, and two kinds of

threshold: δ and (1/4)δ. From our simulation results, no matter

what condition (including the number of data points, the

number of cells, the size of the sliding window, and the

threshold of dense cell) is, the clustering purity of our GDense

algorithm is always higher than that of the CDS-Tree

algorithm.

Index Terms—Clustering, data mining, data stream,

density-based, grid-based.

I. INTRODUCTION

Data mining involves the use of sophisticated data analysis

tools to discover previously unknown, valid patters and

relationships in large data sets. Data mining can be used in

many areas in our life. Data mining algorithms can be

classified into the following categories: classification,

clustering, association rules, sequential patterns, time series

patterns, link analysis and text mining. A data stream is an

ordered sequence of items that arrives in timely order [1].

A data stream is a sequence of dynamic, continuous,

unbounded and real time data items with a very high data rate

that can only read once. High speed refers to the phenomenon

that the data rate is high relative to the computational power.

Mining data streams is concerned with extracting knowledge

structures represented in models and patterns in non-stopping

streams of information. It raises new problems for the data

mining community in terms of how to mine continuous

high-speed data items that you can only have one look at [2],

[3] Mining data streams is a real time process of extracting

interesting patterns from high-speed data streams. Therefore,

the research in data stream mining has gained a high

attraction due to the importance of its applications and the

increasing generation of streaming information. Applications

of data stream analysis can vary from critical scientific and

astronomical applications to important business and financial

ones [4], [5].

Clustering is an important task in data mining. The

problem of clustering can be defined formally as follows:

given n data points in a d-dimensional metric space, partition

the data points into k clusters such that the data points within

a cluster are more similar to each other than data points in

different clusters [6]. A common form of data analysis in

many applications involves clustering. It is useful for

discovering groups and identifying interesting distributions

in the underlying data. Clustering algorithms are attractive

for the task identification in spatial databases.

The density-based approach applies a local cluster

criterion. Clusters are regarded as dense regions in the data

space, and separated by regions of low object density (noise

or outlier). These regions may have an arbitrary shape and the

points inside a region may be arbitrarily distributed [7]. The

advantages of the density-based approach are that it can

discover clusters with arbitrary shapes and it does not need to

preset the number of clusters.

Although this method has a lot of advantages, it still has

some disadvantages. If users do not give the appropriate

values of these parameters, the result would be very bad. In

the data streams environment, Cao et al. proposed

DenStream [8]. The method can discover clusters of arbitrary

shape in data stream, but it is insensitive to noises. The

grid-based approach is the feature space quantized into cells

using a grid structure. The cells can be merged together to

form clusters [9].

The ubiquitous presence of data streams in a number of

practical domains has generated a lot of research in this area

[10]-[17]. Discovery of the patterns hidden in streaming data

imposes a great challenge for cluster analysis. The goal of

clustering is to group the streaming data into meaningful

classes [9]. Furthermore, because of the dynamic nature of

evolving data streams, the role of outliers and clusters are

often exchanged, and consequently new clusters often

emerge, while old clusters fade out. The difficulties of data

streams clustering contain storage overhead, low clustering

quality and a low updating efficiency. Therefore, the

clustering algorithm should adopt an incremental manner. It

becomes more complex when data streams insert and delete.

The CDS-Tree algorithm combines the advantages of the

grid-based approach and the density-based approach. It can

handle large databases. However, the clustering quality is

restricted to the grid partition and the threshold of a dense cell.

In the CDS-Tree algorithm, when the threshold is set too

small, it cannot discard noises and it needs many merging

The GDense Algorithm for Clustering Data Streams with

High Quality

Ye-In Chang, Chia-En Li, and Shu-Yi Lin

Lecture Notes on Software Engineering, Vol. 2, No. 4, November 2014

353DOI: 10.7763/LNSE.2014.V2.149

Manuscript received January 24, 2014; revised April 2, 2014. The

research was supported in part by the National Science Council of Republic

of China under Grant No. NSC-101-2221-E-110-091-MY2.

Ye-In Chang, Chia-En Li, and Shu-Yi Lin are with the Computer Science

and Engineering Department, University of National Sun Yat-Sen

University, 70 Lienhai Rd., Kaohsiung 80424, Taiwan, R.O.C. (e-mail:

changyi@cse.nsysu.edu.tw, lice@db.cse.nsysu.edu.tw,

suyiinformation@gmail.com).

mailto:changyi@cse.nsysu.edu.tw
mailto:lice@db.cse.nsysu.edu.tw

times at the merging stage. On the other hand, when the

threshold is set too large, it has some missing cases which

will affect clustering quality. Therefore, to improve the

disadvantages of the CDS-Tree algorithm, in this paper, we

present a new clustering algorithm, GDense, for data streams.

It combines the grid-based approach with the density-based

approach. We use the clustering algorithm of the grid-based

approach, because it is efficient for large special databases.

So, it adapts to the data streams environment. We also apply

the idea of the density-based approach, because it can

discover clusters with arbitrary shapes, and it does not need to

preset the number of cluster.

The rest of the paper is organized as follows. Section II

gives a survey of several well-known clustering algorithms

for data streams. Section III, presents the proposed new

clustering algorithm based on the grid and dense approaches

for data streams. In Section IV, we give a comparison of the

performance of the CDS-Tree algorithm and our new

clustering algorithm. Finally, we give a conclusion.

II. RELATED WORK

The CDS-Tree (Cell Dimension Tree for Streams)

algorithm is a cell-based approach. The CDS-Tree [18] stores

only non-empty cells and keeps the position relationship

among cells. The CDS-Tree of dataset X under a partition is a

balanced tree <Root-Node, MidNodes, Leaf-Nodes, Edges>.

Suppose database X has the dimensions A1, A2, . . . ,Ak, we

have

1) Root-Node is the root-node of the tree and corresponding

to the first dimension A1.

2) Mid-Nodes is the set of intermediate nodes that are

between the root nodes and the leaf nodes. The

Mid-Nodes at the i-th level corresponds to the dimension

Ai, uniquely, and contain all the distinct interval numbers

of the dimension Ai corresponding to the non-empty cells

based on intervals of the anterior the i-th dimension.

3) Leaf-Nodes is the set of the leaf-nodes, which is at the

level (k+1). A leaf-node is represented as <Coor,

Total-Num, Num-Point-List>. Coor is the coordinate of a

cell represented as (cNO1, cNO2, . . . ,cNOk). Total-Num is

the total number of points falling in this cell.

Num-Point-List is a list of the number of points, whose

length is equal to the number of buckets in the sliding

window, representing the number of points in the

corresponding bucket that fall in the cell. Fig. 1 illustrates

a sliding window model of the data stream. There are u

buckets in window, whcih are numbered with B1, B2, . . . ,

Bn. We have the following properties:

4) The Edges is a set of the pointers in non-leaf nodes

(Root−Node and Mid−Nodes).

Fig. 1. A sliding window model.

The non-leaf nodes have the form <cNO, pointers>, where

cNO is a keyword. The keyword of the i-th level is a distinct

interval number of the i-th dimension corresponding to a cell,

and pointer is a set of pointers; each of which points to the

next level node. The pointer of the k-th level internal-nodes

points a leaf node.

5) A path from the root node to a leaf node corresponds to a

cell.

Fig. 2 a) shows the cell structure of a 2-dimension (A1 and

A2) dataset under a partition, so the interval number of each

dimension is from 1 to 6. Suppose that the gray cells

represent the non-empty cells, and they show the distribution

of data stream in a window. Fig. 2 b) is the CDS-Tree

structure corresponding to the cell structure, which only

stores non-empty cells.

 a) b)

Fig. 2. An example of a CDS-Tree: a) the cell structure of a 2-dimension; b)

the CDS-Tree structure corresponding to the cell structure.

The CDS-Tree building algorithm receives the current data

object and computes coordinates (i.e. the interval number of

each dimension) of them. If the cell corresponding to this

object exists, we add the number of points in this cell.

Otherwise, we create a new cell. The algorithm does not deal

with the discard of buckets. The Clustering algorithm based

on the CDS-Tree executes a width-first search on the

CDS-Tree. Fig. 3 gives the clustering procedure on data

streams, which marks adjacent dense cells with the same

cluster number.

Fig. 3. The Clustering algorithm based on the CDS-Tree.

III. THE GDENSE ALGORITHM

In this section, we present our GDense algorithm for

clustering data streams. The GDense algorithm is a clustering

algorithm based on the grid and dense approaches. Moreover,

it is based on the sliding window model. In the data stream

environment, as the data increases, the requirement of the

storage space will also increase. Since the GDense algorithm

only stores information about the non-empty grids, it needs

only small memory space. On the other hand, the clustering

result based on the grid approach is limited by the grid size.

Therefore, we propose a refinement algorithm to improve

those quality of the grid-based algorithms. We focuses on the

data stream environment. Several assumptions should be

restricted in order to make our work feasible. These

assumptions are as follows:

Lecture Notes on Software Engineering, Vol. 2, No. 4, November 2014

354

1) The input data must be number data.

2) The input data is two-dimension data.

3) Cluster similarity is based on the distance.

The GDense algorithm maps each incoming data point into

the one non-overlapping rectangular cells (grids), and a

cluster is composed of a set of dense cells and dense

quadcells. A dense cell is defined as a cell whose number of

data points is larger than or equal to δ. Table I shows the

parameters used in our GDense algorithm. A cell as shown in

Fig. 4 a) is divided into four quadcells according to different

directions: UL (upper-left), UR (upper-right), DL (down-left)

and DR (down-right) as shown in Fig. 4 b).

TABLE I: DESCRIPTION OF PARAMETERS

Str The stream data

δ The threshold of a cell

count The count of data points in the cell

CNum The cluster number of the cell

cell x The x coordinate of a cell

cell y The y coordinate of a cell

UL The count of data points in an upper-left quadcell

UR The count of data points in an upper-right quadcell

DL The count of data points in a down-left quadcell

DR The count of data points in a down-right quadcell

UL_CNum The cluster number of a ULquadcell

UR_CNum The cluster number of a URquadcell

DL_CNum The cluster number of a DLquadcell

DR_CNum The cluster number of a DRquadcell

Old_Object The oldest object

ClusterResult The cluster result

a) b)

Fig. 4. Cells and quadcells: a) a cell; b) the corresponding quadcells.

In addition to four quadcells, we also consider the

threshold of a quadcell. Take cell (4, 3) which is a dense cell

in Fig. 5 as an example. If we only take the threshold of a cell

into account, some data points may become outliers. The

cluster only contains cell (4, 3). If we consider quadcells but

not their thresholds, all data points will be in a cluster. But the

distance is far between cell (0, 3) and cell (4, 3). On the

contrary, if we take the threshold of the quadcell into account,

the cluster will be the shadow region, which is more precise

than previous results. To improve the clustering quality, we

take the threshold of the quadcell into consideration.

Therefore, a dense quadcell is defined that the number of data

points is larger than or equal to (1/4)δ, whereδis the threshold

of a cell.

Fig. 6 shows our algorithm. The GDense algorithm has

two procedures: Procedure ClusterDS and Procedure

User_Request. Basically, the main algorithm is in Procedure

ClusterDS. When users request for the clustering result, the

GDense algorithm will call Procedure User_Request and

response in real time. Procedure ClusterDS contains two

steps: data insertion and data deletion. Fig. 7 shows

Procedure ClusterDS. Because of the sliding window model,

we must record the oldest object. If the sliding window is not

full, we will insert data and cluster data by calling Procedure

InsertionD. Otherwise, when the sliding window is full, we

will delete the oldest data and cluster data by calling

ProcedureDeletionD.

Fig. 5. An example of the threshold of the quadcell of cluster data streams.

Fig. 6. Procedure GDense.

Fig. 7. Procedure ClsuterDS.

Step 1: Data Insertion

In this step, first, when the stream data is inserted, we will

map the original data to the space database and update the

count of the cell structure. Procedure InsertionD is shown in

Fig. 8.The original cell structure is shown in Fig. 9 a), and

data point X is mapped to cell (1, 2) as shown in Fig. 9 b).

After mapping the data point to cell structure, it will update

the value of count to 1, cell_xto 1, cell_y to 2 and UL to 1. If

the count of data points in the quadcell is more than (1/4)δ,

these data points may be merged. Finally, it will return CellP

= (1, 2) and QuadcellP = UL.ProcedureInsertionD contains 7

cases as shown in Fig. 10 and Fig. 11. We take 3 factors about

the cell and the quadcell into consideration: whether there is

CNum, whether it is dense, and whether it has outer

neighbors.

Step 2: Data Deletion

When the sliding window is full, Step 2 will be applied.

First, we apply Procedure Del_Update(Old_Object,δ, CellP)

as shown in Fig. 12 to delete dataOld_Object and update the

cell structure of the corresponding cell. If the count of the

corresponding cell is less than the density threshold after

deleting data Old_Object, CNum of the cell and its quadcells

will be updated to 0. CNum = 0 means that those data points

in the cell are outliers. Procedure DeletionD is shown in Fig.

12. In this step, it contains 10 cases as shown in Fig. 13. Let

NumX be the CNum of CellP, where CellP is the cell of

deleted point. We take account of the following 5 factors

Lecture Notes on Software Engineering, Vol. 2, No. 4, November 2014

355

about the cell as shown in Fig. 14: whether NumX is updated,

whether the CNum of the right diagonal quadcell is NumX,

whether the CNum of left diagonal quadcell is NumX,

whether theCNum of the up and down quadcells are NumX

and whether theCNum of the left and down quadcells are

NumX. If NumX is updated, it may affect other clusters.

Fig. 8. Procedure InsertionD.

(a) (b)

Fig. 9. An example: data structure of Procedure Ins_Map_Update: a) the

original cell structure of cell (1, 2); b) data point X (1.2, 2.6) is mapped to

cell (1, 2).

Fig. 10. The overview of 7 cases.

Now, let us use a simple example to show our algorithm

with high quality. In the example of Table II, data point (1.1,

1.8) in transaction Tid1 will be mapped to cell (1, 1) by calling

Procedure Ins_Map_Udpate. Let δbe 8 and (1/4)δ be 2.

Because both of cell (1, 1) and the quadcell in cell (1, 1) have

no CNum and are not dense, it is Case 7 of

ProcedureInsertionD. In the same way, the insertions from

transaction Tid1 to transaction Tid6 are also Case 7 of

Procedure InsertionD. After inserting the 7th data point, the

quadcell in cell (0, 1) becomes dense, but it has no outer

neighboring cell. So, it cannot form a cluster. Therefore, it is

Case 6 of ProcedureInsertionD.

Fig. 11. The 7 cases of data insertion.

Fig. 12. Procedure DeletionD.

Fig. 13. The overview of 10 cases.

Lecture Notes on Software Engineering, Vol. 2, No. 4, November 2014

356

After inserting the 10th data point into cell (1, 1), the count

of the cell is greater than δ. So, cell (1, 1) becomes dense.

Because cell (1, 1) has no CNum, the cell can form a cluster.

Moreover, the cell has outer neighboring quadcell and the

count of the quadcell is greater than (1/4) δ, so it connects the

outer neighboring quadcell. Therefore, this case is Case 2 of

Procedure InsertionD.

When the 11th and 12th data points are inserted, the two

data points will become outliers. Although the count of the

quadcells in cell (1, 2) is greater than (1/4)δ, it has no outer

neighboring cell. Therefore, due to a cluster has to be dense,

so the two data points can not form a cluster. In the same way,

from order 13 to order 14 are also Case 7 of Procedure

InsertionD. After inserting the 15th data point, the quadcell in

cell (0, 1) will be dense. It is Case 4 of Procedure InsertionD.

The data points in the quadcell will be connected into cluster

C1.

In the same way as that of the above-mentioned cases, after

inserting 20 data points, the result is shown in Fig. 15. There

are 5 outliers in the 20 data points.

Fig. 14. The 10 cases of data deletion.

Fig. 15. The result of the insertion from Tid1 to Tid20, where δ= 8, (1/4)δ= 2.

TABLE II: GIVEN STREAM DATA POINTS, WHERE WINDOW SIZE = 30, Δ = 8.

Tid data point Tid data point

1 (1.1, 1.8) 11 (1.7, 2.9)

2 (1.2, 1.9) 12 (1.8, 2.9)

3 (0.6, 1.4) 13 (1.7, 0.8)

4 (1.6, 1.3) 14 (0.9, 1.9)

5 (1.9, 1.6) 15 (0.7, 1.6)

6 (1.4, 1.8) 16 (1.8, 0.7)

7 (0.8, 1.1) 17 (2.7, 2.9)

8 (1.5, 1.4) 18 (0.2, 0.4)

9 (1.9, 1.1) 19 (1.6, 1.6)

10 (1.1, 1.4) 20 (2.8, 2.6)

IV. PERFORMANCE

In this section, we study the performance of the GDense

algorithm by simulation, and make a comparison with the

CDS-Tree algorithm [18]. Our experiments were performed

on an Intel Pentium IV 2.66G Hz, 1GB RAM, running

Windows XP Professional, and coded in Java.

The generation of data sets is controlled by a set of

parameters that are summarized in Table III. We performed

evaluation with these data sets which contain data points in

the two-dimensional space. Clustering validation [1] refers to

procedures that evaluate the results of cluster analysis in a

quantitative and object fashion. The clustering validation

usually uses the execution time and cluster quality to evaluate

the cluster. One of the ways of measuring the quality of a

clustering solution is the cluster purity. Let there be k clusters

of the dataset D and the size of cluster Cj be |Cj |. Let |Cj |class=i

denote number of items of classi assigned to cluster j. Given

the true set of clusters (referred to as class henceforth to avoid

confusion), CT = {c1, c2,...,cL}. The cluster obtained from an

algorithm is Cs = {C1, C2,...,Ck}. The purity of this cluster is

given by [19]

 𝑝𝑢𝑟𝑖𝑡𝑦 𝐶𝑗 =
1

|𝐶𝑗 |
max𝑖(|𝐶𝑗 𝑐𝑙𝑎𝑠𝑠 = 𝑖 (1)

The overall purity of a clustering solution could be

expressed as a weighted sum of individual cluster purities

𝑝𝑢𝑟𝑖𝑡𝑦 =
 𝐶𝑗

𝐷

𝑘
𝑗=1 𝑝𝑢𝑟𝑖𝑡𝑦 𝐶𝑗 (2)

In general, the larger the value of the purity is, the better

the solution is. Purity lies in the range [0, 1], with a perfect

clustering corresponding to the purity value of 1 [20].

TABLE III: PARAMETERS OF THE DATA GENERATOR

Parameter Meaning

N The total number of data points

m The number of cells

w The size of the sliding window

δ The threshold of a dense cell

We make a comparison with the CDS-Tree algorithm [18].

In our simulation, four parameters and their default settings

are listed in Table IV. The synthetic datasets used in our

simulation were generated by randomly creating 5 clusters on

1000 × 1000 space. We set 5 clusters which contain 2 circles

and 3 ellipses. Given a circle, suppose the center of the circle

locates at (a, b), so the equation of the circle is

(x - a)2 + (y - b)2 = r2 (3)

Fig. 16 shows an ellipse. Moreover given an ellipse,

suppose the center of ellipse locates at (c, d), so the equation

of the ellipse is

Lecture Notes on Software Engineering, Vol. 2, No. 4, November 2014

357

(x - c)2/ h2 + (y - d)2/ v2 = 1 (4)

Fig. 16. The ellipse.

TABLE IV: PARAMETERS OF THE GENERATOR

Parameter Value

N 20000...100000

m 100 * 100...200 * 200

w 200...1000

δ 8...40

Table V and Table VI show the parameters of the 5 graphs.

The total number of points is changed from 20000 to 100000

in the 5 graphs, and the threshold of a dense cell is equal to

0.4 percentage of the total number of data points. We map the

data points to 100 × 100 cell space. Fig. 17 shows a

comparison of the purity between our GDense algorithm and

the CDS-Tree algorithm in 10 times averages. The purity of

the GDense algorithm is above 95%, based on the

distribution of 5 clusters. The data points in the 5 clusters are

created randomly. Even when the density of a cell A1δis less

than, but the cell is close to a cluster C1, our algorithm will

add such a cell A1 to the cluster C1. Because the points the

quadcell in the cell A1 is more than the threshold of a dense

quadcell. While in the CDS-Tree algorithm, the points in

such a cell A1 will be considered as outliers. If such points are

considered as outliers, the purity will be affected.

TABLE V: PARAMMETERS OF 2 CIRCLES

Circle Center Radius (r)

Circle 1 (150, 200) 130

Circle 2 (600, 300) 100

Circle 3 (400, 550) 60

TABLE VI: THE PARAMETERS OF 2 CIRCLES

Ellipse Center Horizon (h) Vertical (v)

Ellipse 1 (100, 650) 200 150

Ellipse 2 (800, 800) 120 100

Fig. 17. A comparison of the purity under 100 × 100 grids partition.

Fig. 18. A comparison of the purity with outliers.

Next, we simulate the data sets with outliers. Fig. 18 shows

the comparison of the purity between the GDense algorithm

and the CDS-Tree algorithm with outliers. The finer the

partition is, the higher the purity is. Our GDense algorithm is

under 100 × 100 grid partitions, and the CDS-Tree algorithm

is under 200 × 200 grid partitions. Therefore, the threshold of

the GDense algorithm is four times than the CDS-Tree. The

number of points is 100000, and the window sizes is 1000.

The percentage of outliers that we set is from 5% to 25%. In

the CDS-Tree algorithm, as the number of outliers increases,

the purity will decrease. This is because the capability of

detecting outliers with finer partition is poor in the CDS-Tree

algorithm. However, no matter whether the number of the

outlier becomes larger or not, the GDense algorithm still can

discard outliers. Therefore, the purity of the GDense

algorithm is more stable than that of the CDS-Tree algorithm.

As mentioned above, we observe that there are two main

conditions which affect the purity. One condition occurs,

when the density of a cell is less than δ and the points in the

cellP is close to a cluster. So, the cellP should be in the

cluster. But when the threshold of a dense cell is set too large,

the cellP will become another cluster. The other condition

occurs, when the threshold of a dense cell is set too small.

The CDS-Tree algorithm cannot detect outliers accurately.

According to these simulation results, our GDense algorithm

can improve the above two cases, resulting in the high purity

of the results of clusters.

V. CONCLUSION

In this paper, we have proposed a new algorithm called

GDense to cluster large databases in data streams. The basic

idea is to use the hybrid partitions, i.e., cells and quadcells, to

raise the clustering quality. Our result not only confirms that

the quality of cluster produced by GDense is much better than

CDS-Tree algorithm based on the grid-based approaches, but

also discards noises during the mining process.

REFERENCES

Lecture Notes on Software Engineering, Vol. 2, No. 4, November 2014

358

[1] C. Jin, W. Qian, C. Sha, J. X. Yu, and A. Zhou, “Dynamically

maintaining frequent items over a data stream,” in Proc. the 12th ACM

Conf. on Information and Knowledge Management, 2003, pp.

287–294.

[2] M. M. Gaber, S. Krishnaswamy, and A. Zaslavsky, “Cost-Efficient

mining techniques for data streams,” in Proc. the Australasian

Workshop on Data Mining and Web Intelligence, 2004, pp. 109–114.

[3] Y. Yogita and D. Toshniwa, “Clustering techniques for streaming

Data-Asurvey,” in Proc. the IEEE Int. Conf. on Advance Computing

Conference, 2013, pp. 951-956.

[4] M. M. Gaber, A. Zaslavsky, and S. Krishnaswamy, “Mining data

streams: A review,” in Proc. ACM SIGMOD Conf., vol. 34, no. 2, pp.

18–26, June 2005.

[5] M. S. B. PhridviRaj and C. V. GuruRao, “Data mining – Past, present

and future – A typical survey on data streams,” Journal of Procedia

Technology, vol.12, pp. 255-263, 2014.

[6] J. Han, J. Pei, and Y. Yin, “CURE: An efficient clustering algorithm

for large databases,” Information Systems, vol. 26, no. 1, pp. 35–58,

March 2001.

[7] M. Ester, H. P. Kriegel, J. Sander, and X. Xu, “A density-based

algorithm for discovering clusters in large spatial databases with

noises,” in Proc. the 2nd Int. Conf. on Knowledge Discovery and Data

Mining, 1996, pp. 226–231.

[8] F. Cao, M. Ester, W. Qian, and A. Zhou, “Density-Based clustering

over an evolving data stream with noise,” in Proc. the SIAM Conf. on

Data Mining, 2006, pp. 326–337.

[9] I. Kunttu, L. Lepisto, J. Rauhamaa, and A. Visa, “Grid-Based

clustering in the content-based organization of large image databases,”

in Proc. 5th Int. Workshop on Image Analysis for Multimedia

Interactive Services, 2004, pp. 21–23.

[10] A. Banerjee and S. Basu, “Topic models over text streams: A study of

batch and online unsupervised learning,” in Proc. the SIAM

Conference on Data Mining, Minneapolis, April 2007, vol. 15, no. 3,

pp. 437–442.

[11] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models

and Issues in Data Stream Systems,” in Proc. the 21th ACM

SIGMOD-SIGACT-SIGART Symposium on Principles of Database

Systems, 2002, pp. 1–16.

[12] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, “A framework for

projected clustering of high dimensional data streams,” in Proc. the

30th VLDB Conf., 2004, pp. 852–863.

[13] J. Feigenbaum, S. Kannan, M. Strauss, and M. Viswanathan, “Testing

and spot-checking of data streams,” in Proc. ACM-SIAM Symposium

Conf. on Discrete Algorithms, 2000, pp. 165-174.

[14] L. O’Callaghan, N. Mishra, A. Meyerson, S. Guha, and R. Motwani,

“Streaming-Data algorithms for high-quality clustering,” in Proc. the

IEEE Int. Conf. on Data Engineering, 2002, pp. 685-694.

[15] P. Chaovalit and A. Gangopadhyay, “A method for clustering transient

data streams,” in Proc. the ACM symposium on Applied Computing,

2009, pp. 1518–15193.

[16] P. Domingos and G. Hulten, “Models and issues in data stream

systems,” in Proc. ACM SIGMOD Conf., 2000, pp. 71–80.

[17] S. Guha, N. Mishra, and R. Motwani, “Clustering Data Streams,” in

Proc. the IEEE Conf. on Foundations of Computer Science, 2000, pp.

359–366.

[18] H. Sun, G. Yu, Y. Bao, F. Zhao, and D. Wang, “CDS-Tree: An

effective index for clustering arbitrary shapes,” in Proc. the 15th Int.

Workshop on Research Issues in Data Engineering: Stream Data

Mining and Applications, 2005, pp. 81–88.

[19] Q. He, K. Chang, E. Lim, and J. Zhang, “Bursty feature representation

for clustering text streams,” in Proc. the SIAM Conf. on Data Mining,

2007, pp. 26–28

Ye In Chang was born in Taipei, Taiwan, R.O.C. in

1964. She received her B.S. degree in computer science

and information engineering from National Taiwan

University, Taipei, Taiwan, in 1986. She received her

M.S. and Ph.D. degrees in computer and information

science from Ohio State University, Columbus, Ohio,

in 1987 and 1991, respectively. From August1991 to

July 1999, she joined the faculty of the Department of

Applied Mathematics at National Sun Yat-Sen University, Kaohsiung,

Taiwan. From August 1997, she has been a professor in the Department of

Applied Mathematics at National Sun Yat-Sen University, Kaohsiung,

Taiwan. Since August 1999, she has been a professor in the Department of

Computer Science and Engineering at National Sun Yat-Sen University,

Kaohsiung, Taiwan. Her research interests include database systems,

distributed systems, multimedia information systems, mobile information

systems and data mining.

Chia-En Li received his B.S. degree

in information

management

from I-Shou University in 2007

and his

M.S. degree in Computer

Science from National

Pingtung

University of Education in 2009.

He is

currently a Ph.D. student in

Department of Computer

Science and Engineering

at National Sun Yat-Sen

University. His research

interests include database

systems and

data mining.

Shu-Yi Lin

received her

B.S.

degree in computer

science from

Feng Chia University in 2007, and

her

M.S. degree in computer science

and engineering from

National

Sun Yat-Sen University in2009. She is

currently a system design

engineer in Taiwan.

Lecture Notes on Software Engineering, Vol. 2, No. 4, November 2014

359

[20] V. Chaoji, M. Hasan, S. Salem, Mohammed, and J. Zaki, “SPARCL:

efficient and effective shape-based clustering,” in Proc. the IEEE Int.

Conf. on Data Mining, 2008, pp. 93-102.

